
Chapter 4: Control Structures I

Java Programming:

 From Problem Analysis to Program Design,
 Second Edition

Friday, November 5, 2010

2

Chapter Objectives

 Learn about control structures.
 Examine relational and logical operators.
 Explore how to form and evaluate logical

(Boolean) expressions.
 Learn how to use the selection control

structures if, if…else, and switch in
a program.

Friday, November 5, 2010

3

Control Structures

 Three methods of processing a program:
 In sequence
 Branching
 Looping

 Branch: Altering the flow of program
execution by making a selection or choice.

 Loop: Altering the flow of program
execution by repeating statements.

Friday, November 5, 2010

4

Control Structures

Friday, November 5, 2010

5

Relational Operators

 Relational operator:
 Allows you to make comparisons in a program.
 Binary operator.

 Condition is represented by a logical
expression in Java.

 Logical expression: An expression that has a
value of either true or false.

Friday, November 5, 2010

6

Relational Operators

Friday, November 5, 2010

7

Relational Operators and
Primitive Data Types

 Can be used with integral and floating-point
data types.

 Can be used with the char data type.
 Unicode Collating Sequence.
 8 < 5 always evaluates to false.
 8 < ‘5’ always evaluates to true. //‘5’= 53

Friday, November 5, 2010

8

Relational Operators and Primitive Data Types

Friday, November 5, 2010

9

Comparing Strings

 Strings are compared character by character,
using the collating sequence, until one of
three conditions is met:
 1. A mismatch is found.
 2. One string is exhausted.
 3. The last characters have been compared and
 are equal.

Friday, November 5, 2010

10

For example,
 “Air” < “Big” // because ‘A’ < ‘B’

 “Air” < “An” // because ‘i’ < ‘n’

 “Hello” < “hello” // because ‘H’ < ‘h’

 “Bill” < “Billy”

Comparing Strings

Friday, November 5, 2010

11

 Strings can not be compared with the usual
<, <=, >, or >= operators,

 and the == and != operators don't compare
the characters in the strings.

Comparing Strings

Friday, November 5, 2010

12

Comparing Strings

 class String
 Method compareTo (<0 , 0 , >0)

 Given string str1 and str2

Friday, November 5, 2010

13

Comparing Strings
String str1 = "Hello";

String str2 = "Hi";

String str3 = "Air";

String str4 = "Bill";

String str5 = "Bigger";

Friday, November 5, 2010

14

Comparing Strings

Friday, November 5, 2010

15

public class Example4_2 {

 public static void main(String[] args) {

 String str1 = "Hello"; //Line 1
String str2 = "Hi"; //Line 2
String str3 = "Air"; //Line 3
String str4 = "Bill"; //Line 4
String str5 = "Bigger"; //Line 5

System.out.println("Line 6: " + "str1.compareTo(str2) evaluates to "
 + str1.compareTo(str2)); //Line 6

 System.out.println("Line 7: " + "str1.compareTo(\"Hen\") evaluates to "
 + str1.compareTo("Hen")); //Line 7

 System.out.println("Line 8: " + "str4.compareTo(str3) evaluates to "
 + str4.compareTo(str3)); //Line 8

 System.out.println("Line 9: " +"str1.compareTo(\"hello\") evaluates to "
 + str1.compareTo("hello")); //Line 9

 System.out.println("Line 10: " + "str2.compareTo(\"Hi\") evaluates to "
 + str2.compareTo("Hi")); //Line 10

 System.out.println("Line 11: " + "str4.compareTo(\"Billy\") evaluates to "
 + str4.compareTo("Billy")); //Line 11

 System.out.println("Line 12: " + "str5.compareTo(\"Big\") evaluates to "
 + str5.compareTo("Big")); //Line 12

Comparing Strings

Friday, November 5, 2010

16

 Values such as -4, -2, 1 and so on, are differences of
the collating sequence of the first unmatched characters of
the string.

 For example:
 in line 6: where, str1= “Hello”, str2=“Hi”

 ‘e’ 101
 ‘i’ 105
 101 – 105 -4

Comparing Strings

Friday, November 5, 2010

17

 In addition to the method compareTo, you
can use the method equals of the class
String.

 Returns true or false.
 Example: str1 = “Hello”, str2= “Hi”

str1.equals(“Hello”); // returns
true

str1.equals(str2); //returns false

Comparing Strings

Friday, November 5, 2010

18

 You should use one of the following tests to compare the
contents of two strings:
 string1.equals(string2)

 string1.compareTo(string2)

• Here's the wrong way to do it:
 string1 == string2
Why wrong?
A comparison of objects (such as Strings) using the == operator
doesn't compare the contents of the Strings. Instead, it compares
 the address of the two Strings.

Comparing Strings

http://www.javabeginner.com/java-string-comparison.htm

Friday, November 5, 2010

http://www.javabeginner.com/java-string-comparison.htm
http://www.javabeginner.com/java-string-comparison.htm

19

String s = “hi";

 s == “hi" // true

 “hi".equals(s) // true
 s == new String(s) // false

Comparing Strings

Friday, November 5, 2010

20

Logical (Boolean) Operators

• ! is unary operator.
• && is binary operator.
• || is binary operator.

Friday, November 5, 2010

21

Example:

!(‘A’ > ‘B’) is true.
 Because ‘A’ > ‘B’ is false !(‘A’ > ‘B’) is true

Logical (Boolean) Operators

Friday, November 5, 2010

21

Example:

!(‘A’ > ‘B’) is true.
 Because ‘A’ > ‘B’ is false !(‘A’ > ‘B’) is true

Logical (Boolean) Operators
This is called the
truth table for the
 operator !

Friday, November 5, 2010

22

Logical (Boolean) Operators

Friday, November 5, 2010

23

Logical (Boolean) Operators
Examples

Friday, November 5, 2010

24

Order of Precedence

11 + 5 <= 9 || 6 < 15 && 7 >= 8
which to solve first:

 arithmetic, relational or logical ?

Friday, November 5, 2010

24

Order of Precedence

11 + 5 <= 9 || 6 < 15 && 7 >= 8
which to solve first:

 arithmetic, relational or logical ?

Friday, November 5, 2010

25

 For more complex expressions:

Unary operators: ++, --, !, unary - and +, type-cast
Multiplication and division: *, /, %
Addition and subtraction: +, -
Relational operators: <, >, <=, >=
Equality and inequality: ==, !=
Boolean and: &&
Boolean or: ||
Conditional operator: ?:
Assignment operators: =, +=, -=, *=, /=, %=

Order of Precedence

Operators on the same line have the same precedence. When they occur together, unary
operators and assignment operators are evaluated right-to-left, and the remaining operators
are evaluated left-to-right. For example:
 A*B/C means (A*B)/C, while A=B=C means A=(B=C).

Friday, November 5, 2010

26

Precedence Rules
Example 4_6: Evaluate the following expression:

 (17 < 4*3+5)||(8*2 == 4*4) && !(3+3 == 6)
 = (17 < 12+5)||(16 == 16) && !(6 == 6)
 = (17 < 17) || true && ! (true)
 = false || true && false
 = false || false
 = false

Friday, November 5, 2010

27

Example: suppose the following declarations:
 boolean found = true;
 boolean flag =false;
 double x =5.2;

Evaluate:
 !found false

 x > 4.0 true
 flag && found false

Go through example 4_8

Precedence Rules

Friday, November 5, 2010

28

Suppose:
 int age = 25;
 char grade=‘B’;

 (age >= 21) || (3 + 8 == 5)
 Because (25 >= 21) is true and the operator used is
||,due to short-circuit evaluation the computer does not
evaluate (3 + 8 == 5).

 (grade == 'A') && (3 - 2 >= 7)
 Because (‘B’ == 'A') is false and the operator used

is &&,due to short-circuit evaluation the computer does not
evaluate (3 - 2 >= 7).

Short-Circuit Evaluation

Friday, November 5, 2010

29

Short-Circuit Evaluation

 A process in which the computer evaluates a
logical expression from left to right and
stops as soon as the value of the expression
is known.

 If the operators | and & are used, NO short
circuit evaluation is used.

Friday, November 5, 2010

30

Selection

 One-way selection
 Two-way selection
 Compound (block of) statements
 Multiple selections (nested if)
 Conditional operator
 switch structures

Friday, November 5, 2010

31

One-Way Selection
 Syntax:
 if (expression)
 statement ;

 Expression referred to as decision maker.
 If the value of the expression is true
 statement executes.
 If the value of the expression is false
 statement does not executes.

Must be in () and no ;

put ; after end of statement

Friday, November 5, 2010

32

Example:
char grade=‘’
if (score >= 90)
 grade = ‘A’;

One-Way Selection

Friday, November 5, 2010

33

//Determine the absolute value of an integer

import java.util.*;

public class AbsoluteValue

{ static Scanner console = new Scanner(System.in);
 public static void main(String[] args)

 {

 int number;

 int temp;

 System.out.println("Enter an integer:"); //Line 1

 number = nextInt(); //Line 2

 temp = number; //Line 3

 if (number < 0) //Line 4

 number = -number; //Line 5

 System.out.println("The absolute value of " + temp+ " is " +
number+"Absolute Value");

 }

Example 4-11
One-Way Selection

Friday, November 5, 2010

34

Two-Way Selection

 Syntax:
 if (expression)

 statement1;
 else
 statement2;

 else statement must be paired with an if.

Friday, November 5, 2010

35

Two-Way Selection

Example:

 boolean positive, negative;
 if (number >= 0)
 positive = true;
 else //number < 0
 negative =true;

Friday, November 5, 2010

36

Two-Way Selection

Example 4-14

if (hours > 40.0) // includes overtime payment
 wages = 40.0 * rate +
 1.5 * rate * (hours - 40.0);
else
 wages = hours * rate;

Given that rate = 100, what wages will be if :
a) hours = 50
b) hours = 30

Friday, November 5, 2010

37

Example 4-15

if (hours > 40.0); //Line 1
 wages = 40.0 * rate +
 1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
 wages = hours * rate; //Line 4

• Because a semicolon follows the closing parenthesis of the if statement
(Line 1), the else statement stands alone. The semicolon at the end of the
if statement (see Line 1) ends the if statement, so the statement at Line 2
separates the else clause from the if statement. That is, else is by itself.
Because there is no separate else statement in Java, this code generates a
syntax error.

• For some common errors made by beginning programmers check ex 4_17,
4_18.

Two-Way Selection

Friday, November 5, 2010

38

Compound (Block of) Statements

Syntax:
 {

 statement1
 statement2
 .

 .
 .

 statementn
 }

Friday, November 5, 2010

39

Compound (Block of) Statements

if (age > 18)
{
 System.out.println("Eligible to vote.");
 System.out.println("No longer a minor.");
}
else
{
 System.out.println("Not eligible to vote.");
 System.out.println("Still a minor.");
}

Friday, November 5, 2010

40

Multiple Selection: Nested if

 Syntax:

 if (expression1)

 statement1;
 else

 if (expression2)
 statement2;

 else
 statement3;

 else is associated with
the most recent incomplete
if.

 Multiple if statements
can be used in place of
if…else statements.

 May take longer to
evaluate.

Friday, November 5, 2010

41

Multiple Selection: Nested if
Example 4_20 :

if (score >= 90)
 System.out.println (“Grade is A”);
else if (score >=80)
 System.out.println (“Grade is B”);
else if (score >=70)
 System.out.println (“Grade is C”);
else if (score >=60)
 System.out.println (“Grade is D”);
else System.out.println (“Grade is
F”);

Friday, November 5, 2010

42

Multiple Selection: Nested if

Example 4_21:

if(temperature >= 50)
 if (temperature >= 80)
 System.out.println (“Good swimming day”);

 else
 System.out.println (“Good golfing day”);

else
 System.out.println (“Good tennis day”);

Friday, November 5, 2010

43

Multiple Selection: Nested if

Example4_22 :

if(tempreture >= 50)

 if (tempreture >= 80)

 System.out.println (“Good swimming day”);

 else

 System.out.println (“Good golfing day”);

Friday, November 5, 2010

44

Multiple Selection: Nested if

Example4_23 :

if (GPA >= 2.0)

 if (GPA >= 3.9)

 System.out.println(“Dean Honor list”);

else

 System.out.println(“GPA below graduation requirement”);

If GPA = 3.8 what will be printed?

Friday, November 5, 2010

44

Multiple Selection: Nested if

Example4_23 :

if (GPA >= 2.0)

 if (GPA >= 3.9)

 System.out.println(“Dean Honor list”);

else

 System.out.println(“GPA below graduation requirement”);

If GPA = 3.8 what will be printed?
GPA below graduation requirement

Friday, November 5, 2010

45

Example4_23 : (rewritten)

if (GPA >= 2.0)

{

 if (GPA >= 3.9)

 System.out.println(“Dean Honor list”);

}

else

 System.out.println(“GPA below graduation requirement”);

Multiple Selection: Nested if

Now, if GPA = 3.8 what will be printed?

Friday, November 5, 2010

45

Example4_23 : (rewritten)

if (GPA >= 2.0)

{

 if (GPA >= 3.9)

 System.out.println(“Dean Honor list”);

}

else

 System.out.println(“GPA below graduation requirement”);

Multiple Selection: Nested if

Now, if GPA = 3.8 what will be printed?

Friday, November 5, 2010

46

Conditional (? :) Operator

 Ternary operator
 Syntax:
 expression1 ? expression2 :
expression3;

 If expression1 = true, then the result of the
condition is expression2.

 Otherwise, the result of the condition is
expression3.

Friday, November 5, 2010

47

Conditional (? :) Operator

Example :

int x = 5 , y =3 , min ;
if (x <= y)
 min = x ;

else
 min = y ;

The above stmt can be written using the conditional operator :
 min = (x <= y) ? x : y ;

Friday, November 5, 2010

48

switch Structures

 expression is
evaluated first.

 expression is also
known as selector.

 expression can be
an identifier or an
expression and only
integral.

 value can only be
integral.

switch (expression)
{
case value1: statements1
 break;
case value2: statements2
 break;
 ...
case valuen: statementsn
 break;
default: statements
}

Friday, November 5, 2010

49

switch Structures

Friday, November 5, 2010

50

Example 4-24

switch (grade)
{
case 'A': System.out.println("The grade is A.");
 break;
case 'B': System.out.println("The grade is B.");
 break;
case 'C': System.out.println("The grade is C.");
 break;
case 'D': System.out.println("The grade is D.");
 break;
case 'F': System.out.println("The grade is F.");
 break;
default: System.out.println("The grade is invalid.");
}

switch Structures

Friday, November 5, 2010

51

 break is optional.
 When the value of the switch expression

matches a case value, all statements
execute until a break is encountered, and
the program skips all case labels in
between.

switch Structures

Friday, November 5, 2010

52

import java.util.*;

public class Example4_25
{
 static Scanner console = new Scanner(System.in);
 public static void main(String[] args) {

 int num;

 System.out.print("Enter an integer between 0 and 10: "); //Line 1
 num = console.nextInt(); //Line 2

 System.out.println(); //Line 3

 System.out.println("\nThe number you entered is " + num); //Line 4

 switch(num) //Line 5
 {
 case 0: //Line 6
 case 1: System.out.print("Hello "); //Line 7
 case 2: System.out.print("there. "); //Line 8
 case 3: System.out.print("I am "); //Line 9
 case 4: System.out.println("Mickey."); //Line 10
 break; //Line 11
 case 5: System.out.print("How "); //Line 12
 case 6: //Line 13
 case 7: //Line 14
 case 8: System.out.println("are you?"); //Line 15
 break; //Line 16
 case 9: break; //Line 17
 case 10: System.out.println("Have a nice day."); //Line 18
 break; //Line 19
 default: System.out.println("Sorry the number is out"
 + "of range."); //Line 20
 }

 System.out.println("Out of switch structure."); //Line 21
 }
}

switch Structures

Friday, November 5, 2010

53

 Sample Run1:

switch Structures

Enter an integer between 0 and 10: 0

The number you entered is 0
Hello there. I am Mickey.
Out of switch structure.

Sample Run2:
Enter an integer between 0 and 10: 9

The number you entered is 9
Out of switch structure.

Friday, November 5, 2010

54

Programming Example:
Cable Company Billing

 Input: Customer’s account number,
customer code, number of premium
channels to which customer subscribes,
number of basic service connections (in the
case of business customers).

 Output: Customer’s account number and the
billing amount.

Friday, November 5, 2010

55

Programming Example:
Cable Company Billing

Solution:
1. Prompt user for information.
2. Use switch statements based on customer’s

type.
3. Use an if statement nested within a switch

statement to determine the amount due by
each customer.

Friday, November 5, 2010

56

Chapter Summary

 Control structures are used to process programs.
 Logical expressions and order of precedence of

operators are used in expressions.
 Compare strings.
 If statements.
 if…else statements.
 switch structures.
 Proper syntax for using control statements.

Friday, November 5, 2010

